Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells.
نویسندگان
چکیده
Hippocampal recordings show that different place cells fire at different phases during the same theta oscillation, probably at the peak of different gamma cycles. As the rat moves through the place field of a given cell, the phase of firing during the theta cycle advances progressively. In this paper we have sought to determine whether a recently developed model of hippocampal and cortical memory function can explain this phase advance and other properties of place cells. According to this physiologically based model, the CA3 network stores information about the sequence of places traversed during learning. Here we show that the phase advance can be understood if it is assumed that the hippocampus is in a recall mode that operates when the animal is already familiar with a path. In this mode, sensory information about the current position triggers recall of the upcoming 5-6 places (memories) in the path at a rate of one memory per gamma cycle. The model predicts that the average phase advance will be one gamma cycle per theta cycle, a value in reasonable agreement with the data. The model also correctly accounts for (1) the fact that the firing of a place cell occurs during approximately 7 theta cycles (on average) as the animal crosses the place field; (2) the observation that the phase of place cell firing depends more systematically on position than on time; and (3) the fact that traversal of an already familiar path produces further modifications (shifts the firing of a cell to an earlier position in the path). This later finding suggests that recall of previously stored information strengthens the memory of that information. In the model, this occurs because of a novel role of N-methyl-D-aspartate channels in recall. The general success of the model provides support for the idea that the hippocampus stores sequence information and makes predictions of expected positions during gamma-frequency recall.
منابع مشابه
Recall of memory sequences by interaction of the dentate and CA3: A revised model of the phase precession
Behavioral and electrophysiological evidence indicates that the hippocampus has a special role in the encoding and recall of memory sequences. Importantly, the hippocampal phase precession, a phenomenon recorded as a rat moves through place fields, can be interpreted as cued recall of the sequence of upcoming places. The phase precession can be recorded in all hippocampal regions, but the role ...
متن کاملHippocampal Correlation Coding
Hippocampal correlation coding is a putative neural mechanism underlying episodic memory. In this thesis, we look at two related phenomena: phase precession and reverse replay of behavioral sequences. Phase precession refers to the decrease of the firing phase of a place cell with respect to the local theta rhythm during the crossing of the place field. Reverse replay refers to reactivation of ...
متن کاملDissociation between the experience-dependent development of hippocampal theta sequences and single-trial phase precession.
Theta sequences are circuit-level activity patterns produced when groups of hippocampal place cells fire in sequences that reflect a compressed behavioral order of place fields within each theta cycle. The high temporal coordination between place cells exhibited in theta sequences is compatible with the induction of synaptic plasticity and has been proposed as one of the mechanisms underlying t...
متن کاملPhase Precession Through Synaptic Facilitation
Phase precession is a relational code that is thought to be important for episodic-like memory, for instance, the learning of a sequence of places. In the hippocampus, places are encoded through bursting activity of so-called place cells. The spikes in such a burst exhibit a precession of their firing phases relative to field potential theta oscillations (4-12 Hz); the theta phase of action pot...
متن کاملPhase precession: a neural code underlying episodic memory?
In the hippocampal formation, the sequential activation of place-specific cells represents a conceptual model for the spatio-temporal events that assemble episodic memories. The imprinting of behavioral sequences in hippocampal networks might be achieved via spike-timing-dependent plasticity and phase precession of the spiking activity of neurons. It is unclear, however, whether phase precessio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Learning & memory
دوره 3 2-3 شماره
صفحات -
تاریخ انتشار 1996